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We numerically study a one-dimensional, nonlinear lattice model which in the linear limit is relevant to the study of
bending (flexural) waves. In contrast with the classic one-dimensional mass-spring system, the linear dispersion relation
of the considered model has different characteristics in the low frequency limit. By introducing disorder in the masses of
the lattice particles, we investigate how different nonlinearities in the potential (cubic, quadratic, and their combination)
lead to energy delocalization, equipartition, and chaotic dynamics. We excite the lattice using single site initial momentum
excitations corresponding to a strongly localized linear mode and increase the initial energy of excitation. Beyond a cer-
tain energy threshold, when the cubic nonlinearity is present, the system is found to reach energy equipartition and total
delocalization. On the other hand, when only the quartic nonlinearity is activated, the system remains localized and away
from equipartition at least for the energies and evolution times considered here. However, for large enough energies for all
types of nonlinearities we observe chaos. This chaotic behavior is combined with energy delocalization when cubic non-
linearities are present, while the appearance of only quadratic nonlinearity leads to energy localization. Our results reveal a
rich dynamical behavior and show differences with the relevant Fermi–Pasta–Ulam–Tsingou model. Our findings pave the
way for the study of models relevant to bending (flexural) waves in the presence of nonlinearity and disorder, anticipating
different energy transport behaviors.
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1. Introduction

The work of Anderson on wave dynamics in disordered
systems has been hailed as one of the major milestones of
20th-century physics.[1] Since the publication of that pio-
neering work, several studies of Anderson localization (AL),
which is the exponential localization of almost all eigenmodes
of random realizations of mass and/or force constant distri-
butions, have been performed.[2–10] The localization of wave
functions (or eigenmodes) leads to the absence of energy trans-
port in disordered systems. Over the years, AL has been
extended to other models, apart from the original electronic
systems, and related phenomena continue to reveal interest-
ing results across many branches of physics.[11–16] Another
scientific landmark of the previous century, which has culmi-
nated in a whole new branch of physics, is the work of En-
rico Fermi and his collaborators.[17,18] Indeed, their work on
the now famous Fermi–Pasta–Ulam–Tsingou (FPUT) problem
gave birth to what we now know as computational physics (see
Ref. [19] and references therein).

There are two main mechanisms through which waves
can be localized in lattice chains, namely (i) disorder and (ii)
nonlinearity, resulting in interesting physical phenomena such

as AL,[1] solitons,[20] and discrete breathers.[21,22] Solitons are

shape-preserving propagating localized formations, while dis-

crete breathers are spatially localized time periodic structures.

The interplay of nonlinearity and disorder has been an area

of intense active research over the years (see Ref. [23] and

references therein for a recent review on the topic of disor-

der and nonlinearity). In earlier studies, the actual role of

nonlinearity on disorder remained not so clear. However,

nowadays the theory of the interplay of disorder and weak

nonlinearity in lattices such as the disordered Klein–Gordon

(DKG) lattice of anharmonic oscillators and the disordered

discrete nonlinear Schrödinger equation (DDNLS) has been

well developed.[24,25] It is now known that weak nonlinear-

ity leads to subdiffusive energy transport in these models. On

the other hand, recent studies of discrete nonlinear models de-

scribing mechanical lattices have exploited the strongly non-

linear limit and have revealed superdiffusive energy transport

in the presence of disorder.[16,26,27]

Regarding mechanical lattices (see e.g., Refs. [28,29]),

one of the most fundamental models describing the longitu-

dinal displacement of point masses connected with springs is

the FPUT model.[17,18] For the linear regime of this model it
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is known that energy propagation in the presence of disorder

is dictated by the form of the dispersion relation in the low

frequency limit, which starts from zero with a linear slope.[30]

The nonlinearity is then found to, generally, enhance energy

transport although a clear understanding of the mechanisms is

not yet established.[31,32] Here, we wish to extend these stud-

ies, by considering a discrete model of a multidimensional

conservative Hamiltonian system featuring a different disper-

sion relation in the low frequency regime. The proposed model

is inspired by the recent interest on incorporating other degrees

of freedom in mechanical lattices (e.g., rotations[33]) and also

on the idea of AL of flexural waves.[34] We study a toy model

whose linear limit describes lattice bending vibrations. Our

main goal is to explore the interplay of nonlinearity and dis-

order and identify differences in energy transport with other

models (e.g. the DKG and/or the FPUT models), which fea-

ture different linear spectra.[23,25,26] In our investigations we

consider single site excitations on lattice sites which are not

too close to the boundaries. This excitation choice typically

results in the excitation of a single localized mode, due to the

presence of strong mass-disorder. In particular, we endeavor to

answer the question of the conditions under which the energy

initially given to a single mode at a single initial excitation

will spread to the rest of the lattice and whether the system

will eventually reach energy equipartition or not, as well as

study its chaotic dynamics. Here we focus on the chaotic be-

havior of conservative lattice systems, but the role of chaos in

various setups of continuous and discrete time models is also

a field of active research, see e.g., Refs. [35–38].

The rest of this paper is organized in the following man-

ner. In Section 2, we describe the proposed one-dimensional

(1D) discrete model. In the next two sections, we discuss

some representative results about the effects of a momentum

single site initial excitation on energy localization, equipar-

tition (Section 3) and chaos (Section 4). In Section 5, we

present a statistical analysis of the localization, equipartition

and chaotic behaviors of the model for a range of energy val-

ues. Finally, in Section 6, we summarize our work and present

its conclusions.

2. The Hamiltonian model and its equations of
motion
We consider a discrete nonlinear model described by the

following Hamiltonian

H34 =
N

∑
n=1

H(n) =
N

∑
n=1

P2
n

2mn
+

K2 ζ 2
n

2
+

K3 ζ 3
n

3
+

K4 ζ 4
n

4
, (1)

where ζn = (un+1− un)− (un− un−1) and Pn = mnu̇n. In our
notation [˙] denotes derivative with respect to time and mn cor-
responds to the mass of the n-th site. In the linear limit, i.e.,
when K3 = K4 = 0, equation (1) describes the transverse dis-
placements of a mass spring chain as illustrated in Fig. 1.[39]

It is worth noting from the sketch in Fig. 1 that for sufficiently
small rotation angles θn, the relation

θn−θn−1 ≡ ζn =
1
a
(un+1−un)−

1
a
(un−un−1)

holds, with a being the distance between neighboring sites.
For simplicity in our study we set a = 1.

u
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u
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Fig. 1. A schematic representation showing the relation between the rota-
tion angles θn, and the relative transverse displacement of the point mass at
un of a lattice with distance a between neighboring masses (in our study we
set a = 1). In the small angle approximation the equations of motion for the
lattice is the linear limit of the Hamiltonian (1).

For the purposes of our work, we consider three different
cases regarding the nonlinear terms. One case has only cubic
nonlinearity (K4 = 0) which we refer to as H3, an additional
case with only quartic nonlinearity (K3 = 0) is, from now on,
referred to as H4, and finally the general case where both non-
linear terms are present (K3 6= 0, K4 6= 0), which we refer to as
H34. Note also that in this work K2 > 0 and we consider dis-
order only in the masses. The coefficients Ki, i = 3,4 (when
non-zero) are kept constant and the corresponding equations
of motion for the general H34 model are

mnün = 2K2

[
(un+1−un)− (un−un−1)

]
−K2

[
(un−un−1)− (un−1−un−2)

]
−K2

[
(un+2−un+1)− (un+1−un)

]
+2K3

[
(un+1−un)− (un−un−1)

]2

−K3

[
(un−un−1)− (un−1−un−2)

]2
−K3

[
(un+2−un+1)− (un+1−un)

]2
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+2K4

[
(un+1−un)− (un−un−1)

]3
−K4

[
(un−un−1)− (un−1−un−2)

]3

−K4

[
(un+2−un+1)− (un+1−un)

]3
. (2)

2.1. Dispersion relation and eigenmodes

Firstly, let us consider some aspects of the linear periodic
case corresponding to K3 = K4 = 0 and mn = m. We assume
Bloch-like solutions of Eq. (2) of the form un = Ae i(qn−ωt).
This solution models traveling waves in a lattice chain, so that
each particle oscillates about its equilibrium position with the
same frequency ω , and amplitude A, while q denotes the Bloch
wave number. Using this ansatz we obtain the system’s disper-
sion relation, which is given by the following equation:

ω =

√
4K2

m

[
4sin2(q/2)− sin2 q

]
, (3)

and is also plotted in Fig. 2(a). The dispersion relation of
this model is quite different from that of the harmonic chain
with central forces, leading to some interesting dynamics. The
uniqueness stems from the particularity of zero group veloc-
ity in the low frequency regime. Note that for low frequencies
the dispersion relation of Eq. (3) resembles the one of a wave
equation with fourth order spatial derivative describing bend-
ing waves in elastic beams.[39]

In what follows we consider finite chains with a size of
N = 28 particles. In addition, we introduce disorder in the
particle masses such that the random masses are taken from a
uniform distribution, i.e., mn ∈ [0.1,1.8] while we fix the lin-
ear potential coefficient to K2 = 1. The nonlinear coefficients
K3, K4, take values of either 1 or 0 such that whenever any of
the nonlinear coefficients is not zero, it is then set to 1, e.g., for
the system H4 we set K3 = 0 and K4 = 1. In Ref. [31] it was
shown that the results do not significantly differ if either mass
or stiffness disorder is implemented hence for this reason we
will consider only the case of mass disorder.

We now describe the localization properties of the lin-
ear normal modes of this system. For this purpose, we con-
sider solutions of the linear part of the system of N masses
given in Eq. (2) to be of the form 𝑢(t) = 𝑈 e−iωt , where
𝑈 = [U1,U2, . . . ,UN ]

T with superscript T denoting the trans-
pose of a matrix. Hence, we obtain the eigenvalue problem

−ω
2
k 𝑀𝑈k =𝐾𝑈k, k = 1, . . . ,N, (4)

where ωk are the eigenfrequencies and 𝑈k the corresponding
eigenvectors. 𝑀 is a diagonal matrix containing the mass ele-
ments, whilst 𝐾 is a sparse diagonal matrix of the coefficients.
We show an eigenfrequency spectrum for a representative dis-
ordered chain of size N = 28 in Fig. 2(b). First we observe that

the very low frequency part of the spectrum is similar to the or-
dered case (where all masses are equal mn = m = 1), while the
upper part has changed significantly and the cutoff frequency
has been increased.
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Fig. 2. (a) Dispersion relation (3) of the lattice bending waves where a is
the lattice spatial constant (which is set to a = 1 in our study), q the wave
number and ω the frequency. (b) The eigenfrequency spectrum of a repre-
sentative disorder chain of size N = 28 with the arrows indicating eigenfre-
quencies for an extended (blue arrow) and a localized (red arrow) normal
mode. The eigenfrequencies have been sorted and indexed from lowest to
highest frequency.

Next, we are interested to characterize the localization
properties of the modes which can be done by computing the
participation number

P = 1/
N

∑
n=1

h2
n, (5)

where hn = Hn/H is the normalized energy of each particle
(see e.g., Ref. [25] for a further discussion of this quantity).
First we note that, as is the case for the classic mass-spring
model with central forces with disorder,[40] the lower part of
the spectrum comprises of extended modes while the upper
part of mostly localized ones. To illustrate that, in Fig. 3(a)
we plot the profiles for the two characteristic modes indicated
in Fig. 2(b). To have a more global picture and for the sake
of comparison, in Fig. 3(b) we also plot the averaged over
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500 disorder realizations, mean participation number 〈P〉, for
linear chains of two types. In particular we contrast for the
same disorder parameters (the random masses are taken from a
uniform distribution, i.e., mn ∈ [0.1,1.8]) the harmonic chains
with central forces, for which the equations of motion become
mnün = un+1 +un−1−2un (blue curve) and non-central forces
obtained by setting K3 =K4 = 0 in Eqs. (1) and (2) (red curve).
We note some of the most glaring differences which are: (i)
modes with the lower indices (k . 20) have higher 〈P〉 for the
chain with central forces than for the chain with non-central
forces and (ii) the chain with central forces has more localized
modes as compared to the chain with non-central forces at any
lattice size [〈P〉 ≈ 2 for k & 160 in Fig. 3(b)].
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Fig. 3. (a) Profiles of an extended (blue curve), as well as a localized (red
curve) normal mode respectively indicated by the blue and red arrows in
Fig. 2(b), for a mass disordered harmonic chain with non-central forces.
(b) Mean participation number 〈P〉 over 500 disorder realizations of linear
eigenmodes for harmonic chains with non-central forces (red curve) and har-
monic chains with central forces (blue curve) of size N = 28. In panel (b),
the modes have been sorted and indexed from the lowest frequency to the
highest frequency modes. One standard deviation in the computation of 〈P〉
is indicated as the lightly shaded areas in panel (b).

3. Evolution of linear modes, energy delocaliza-
tion and equipartition
In this section, we consider the fate of a single site mo-

mentum initial excitation under the influence of the different
kinds of nonlinearities (see the three different kinds of Hamil-
tonians presented in Section 2). In Fig. 3(a) we depict, using a
red curve, an almost single site localized mode, namely mode
k = 252, for which only site n = 187 is significantly displaced
from its equilibrium position. Note that the size N of the lat-
tice determines the number of highly localized modes. In our

study, we set the size of the chain to be N = 28 in order to have
a significant number of highly localized modes and implement
fixed boundary conditions (u0 = un+1 = u̇0 = u̇n+1 = 0). The
dynamics is studied by numerically solving the different types
of equations of motion given in Section 2 using the ABA864
symplectic integrator.[41–43] This integration scheme allows
the accurate conservation of the total energy H, and keeps the
relative energy error

∆H(t) =
∣∣∣∣H(t)−H(0)

H(0)

∣∣∣∣ (6)

less than 10−4 when the integration time step is τ = 0.1. For
illustrative purposes, we show in Fig. 4 a representative exam-
ple of the time evolution of ∆H(t) for a case of the H4 system.
From the presented results it is clearly seen that the used inte-
gration scheme keeps the error bounded for the whole duration
of the simulation and that its upper bound does not increase in
time.

↩

↩

↩

↩

↩
D
H
↼
t
↽

   

t

Fig. 4. Temporal evolution of the relative energy error ∆H(t) (6) of a single
disordered realization with energy H4 = 0.2 and time step τ = 0.1.

3.1. Spatiotemporal evolution of modes

To better understand the fate of single site initial excita-
tions, let us discuss the evolution of normal modes. To do so,
we transform the linear part of the Hamiltonian (1), and cast
it in terms of the system’s normal modes. At any time t, we
define the velocity vector 𝑉 (t) = [u̇1(t), . . . , u̇N(t)]T. The pro-
jection of this vector onto the system’s normal modes is given
by 𝑇 =𝐴−1𝑉 (t) with matrix 𝐴 having the lattice eigenvec-
tors as columns. In the same manner, the displacement vector
𝑈(t) = [u1(t), . . . ,uN(t)]T is projected onto normal modes to
yield 𝑅 = 𝐴−1𝑈(t). Tk and Rk respectively are elements of
the projection vector corresponding to normal mode momenta
and positions of the k-th mode (k = 1, . . . ,N). Thus the total
energy of the linear modes is given as

H =
N

∑
k=1

Ek =
N

∑
k=1

(
T 2

k
2

+
ω2

k R2
k

2

)
. (7)
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We first consider the spatiotemporal evolution of the linear
modes after a single site momentum excitation of the system
has been implemented for the various nonlinearities. The evo-
lution of normal modes for H3 is shown in Fig. 5 for both the
near linear regime [panel (a)] as well as the nonlinear regimes
[panels (b) and (c)]. We shift between these regimes by chang-
ing the system’s energy.

More specifically, in Fig. 5(a), we depict results for the
evolution of H3 in normal mode space after a single site mo-
mentum initial excitation for the near linear regime where
mainly the localized mode k = 252, is significantly excited
(≈ 90% of the total energy), although some other normal
modes are weakly excited as well (≈ 10% of the total energy).
However, no coupling of the normal modes takes place during
the dynamical evolution. On the other hand, an increase in en-
ergy entails that the system becomes more nonlinear. We de-
pict results for this nonlinear regime in Fig. 5(b). There we see
that the nonlinearity due to the cubic potential is able to facil-
itate coupling of the linear normal modes until the modes are
well mixed especially after t & 104. We shall investigate fur-
ther this mixing of linear eigenmodes in Subsection 3.3 where
we will discuss the route to energy equipartition. Surprisingly
enough, the quartic nonlinearity (H4) does not appear to facili-
tate normal mode mixing as depicted by the results in Fig. 5(c)
which show that, although other normal modes besides mode
k = 252 are initially excited, they do not mix at all. The results
for H34 (not shown here) are similar to those for H3.
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Fig. 5. Spatiotemporal evolution of normal mode energy content after a mo-
mentum single site initial excitation for the chain with non-central forces (a)
H3 with energy H3 = 10−4, (b) H3 with energy H3 = 0.2, and (c) H4 with
energy H4 = 0.2. The color bar is in logarithmic scale.

3.2. Energy delocalization

We now turn our attention onto another issue and inves-
tigate how the initially localized energy spreads in time to the
rest of the lattice sites when the system is initialized by a single
site momentum excitation. In particular, we follow the lattice
dynamics for initially localized energy excitations for systems
modeled by the Hamiltonians H3, H4, and H34 for the same
value of total energy. More specifically, we set H = 0.2 and

we show results for momentum single site initial excitations
in Fig. 6 for the three types of nonlinearities. In Fig. 6(a),
we show the spatiotemporal evolution of the initially localized
wave-packet when the system is described by H3. The results
in Fig. 6(a) show the delocalization of the wave-packet which
eventually leads to energy spreading to the whole lattice. This
happens especially for the time interval t & 104. Results for
the dynamics when the system is governed by H4 are depicted
in Fig. 6(b) showing that the wave-packet remains localized
at least for the duration of our simulation. For a combination
of these two types of nonlinearities, i.e., the cubic and quartic
nonlinearity, the dynamical behavior again reverts to show-
ing energy spreading for the initially localized wave-packet
around site n = 187 [Fig. 6(c)]. To ascertain the energy lo-
calization we integrate the systems for the three cases up to
t = 106 time units, which is well beyond the times we initially
observe energy spreading. With this in mind we set the final
integration time at t = 106 for all our simulations.
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n









t
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(a) (b) (c)

Fig. 6. Spatiotemporal evolution of the energy density after momentum sin-
gle site initial excitation. Results are shown for systems (a) H3, (b) H4, and
(c) H34. The total system energy for all three cases is H = 0.2. The black
curves in all plots depict the mean position of the energy density. The used
color bar is in logarithmic scale such that yellower (lighter) regions have
more energy than greener (darker) regions.

In order to quantify the energy localization, we consider
the temporal evolution of the participation number P given by
Eq. (5) for the three cases. We find that the nonlinear dynam-
ics in cases where the cubic nonlinearity is present (i.e., for
the cases of H3 and H34), exhibit saturation of the participation
number to P≈ 125 for t & 104. This is depicted by the blue and
green curves in Fig. 7(a) and the saturation of P is clearly ob-
served by the flattening of these two curves, especially during
the last two decades of the evolution. However, for H4, where
only the quartic nonlinearity is present, the dynamics reveal
localized behavior with no energy spreading as depicted by a
practically flat curve of P in Fig. 7(a) (red curve) [P(t) ≈ 2].
We believe that this absence of wave-packet spreading is pos-
sibly due to the non-excitation of other modes [see Fig. 5(c)]
which does not permit the spreading of energy to the rest of
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the lattice. It is interesting to note that this behavior is in con-
tradiction to what is observed in the two versions of the ho-
mogeneous FPUT model, where it is known that the α-FPUT
system (cubic nonlinearity) thermalizes much later than the β -
FPUT one (quartic nonlinearity).[57] Even though our system
is disordered, H3 and H34 reach equipartition faster than H4.
A combination of the two kinds of potentials (H34) shows that
the dynamics is strongly dominated by the cubic potential as
its behavior is similar to the one observed for the H3 model.
In fact, there are not many differences between the dynamics
of H3 and H34. In fact by comparison of Figs. 6(a) and 6(c)
as well as the blue and green curves in Fig. 7(a) it is clear that
there are not many differences between the dynamics of H3

and H34.
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Fig. 7. Time evolution of (a) P (Eq. (5)), and (b) η (Eq. (9)); for systems
H3 (blue curves), H4 (red curves) and H34 (green curves). The total system
energy for all three cases is H = 0.2. The dashed horizontal line in panel (b)
indicates the analytical value of 〈η〉 when energy equipartition is reached.

3.3. Energy equipartition

It is also interesting to determine whether the system
eventually reaches energy equipartition for the three types of
nonlinearities. In order to do so, we numerically compute the
so called “spectral entropy” by monitoring the corresponding
time evolution of the normal modes.[44] To this end we write
the weighted harmonic energy of the k-th mode as

vk = Ek/
N

∑
k=1

Ek,

where Ek in Eq. (7) is the k-th linear mode energy. Then the
spectral entropy at time t is computed as

S(t) =−
N

∑
k=1

vk(t) lnvk(t), (8)

where 0 < S≤ Smax = lnN. However, the normalized spectral
entropy η(t) in that case is given as

η(t) =
S(t)−Smax

S(0)−Smax
. (9)

Thus, through such normalization, 0≤η ≤ 1. When η is close
to one, the dynamics do not substantially deviate from the ini-
tially excited mode(s). However, as more modes are excited, η

decreases and approaches zero. For a system at equipartition,
a theoretical prediction for the mean entropy η exists, which
assumes that the modes follow a Gibbs distribution when the
nonlinearity is weak. The analytical form of the mean entropy
〈η〉an in that case is given as

〈η〉an =
1−C

lnN−S(0)
, (10)

with C ≈ 0.5772 being the Euler constant.[45,46] In Fig. 7(b),
we show the time evolution of the spectral entropy η in order
to determine how the system approaches energy equipartition.
When η is equal to the analytically predicted value of Eq. (10),
we conjecture that energy equipartition is achieved. Again a
similar behavior, in terms of how energy equipartition is ap-
proached, is observed between H3 and H34 where the cubic
nonlinearity is active. This is shown in Fig. 7(b) where there
is close resemblance between the results for H3 and H34, in-
dicated by the blue and green curves. These curves also show
that energy equipartition (indicated by η ≈ 〈η〉an = 0.0930)
is achieved at around the same time as energy delocalization.
For the case where the system only has a quartic nonlinearity
(H4), we find no energy equipartition, as shown by the corre-
sponding time evolution of η , which remains fairly constant at
almost η = 1 in Fig. 7(b).

4. Chaotic behavior
Chaoticity is another aspect that is interesting to study

about the dynamics of the system. To study chaos, in this
work we utilize a global indicator of chaos called the maxi-
mum Lyapunov exponent (mLE), which we compute using the
so-called standard method.[47–49] The finite time mLE (ftmLE)
is defined as

λ (t) =
1
t

ln
||𝑤(t)||
||𝑤(0)||

, (11)

where 𝑤(t) is a vector of small perturbations from the phase
space trajectory at time t, also called deviation vector, which
we denote as

𝑤(t) = [δu1(t), . . . ,δuN(t),δ p1(t), . . . ,δ pN(t)], (12)

with δun(t) and δ pn(t) respectively indicating small perturba-
tions in position and momentum for the nth lattice site. The
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mLE is defined as Λ = limt→∞ λ (t). In Eq. (11), || · || denotes
the usual Euclidean vector norm. For chaotic trajectories, λ

attains a finite positive value, otherwise, λ ∝ t−1 for regular or-
bits. An efficient and accurate method to follow the evolution
of 𝑤(t) is to numerically integrate the so-called variational
equations,[50] which govern the vector’s dynamics, together
with the Hamilton equations of motion using the tangent map
method outlined in Refs. [51–53]. Let us now investigate the
chaotic behavior of the system for the three types of nonlinear-
ity under study. The time evolution of λ reveals in all cases a
chaotic response, as shown by the ftmLE which deviates from
λ (t) ∝ t−1 (see Fig. 8). In fact, for H3 and H34 we attain the
same final values of λ towards the end of the simulations as
shown by the blue and green curves in Fig. 8. In our study,
we also utilize the so-called the deviation vector distribution
(DVD) to analyze chaos further. The DVD is able to iden-
tify spots in real or phase space which are more sensitive to
chaos.[54–56] The DVD is written as

ξn(t) =
δu2

n +δ p2
n

∑
N
n=1(δu2

n +δ p2
n)
. (13)

   

t

↩

↩

↩



η

H


H


H


Fig. 8. The time evolution of λ (11) for systems (i) H3 (blue curve), (ii)
H4 (red curve), and (iii) H34 (green curve) for the same momentum initial
excitation discussed in Section 3. The dashed diagonal line guides the eyes
for slope −1.

We are thus able to describe the spatial distribution of
chaos in a dynamical system by making use of the DVD. We
now identify the most active chaotic spots in the lattice by fol-
lowing the time evolution of the DVDs. We use as a repre-
sentative case the results of H3 indicated by the blue curve in
Fig. 8. The spatiotemporal evolution of the DVD is plotted in
Fig. 9(a) and the figure shows that, on average, the mean posi-
tion of the DVD remains close to the excitation region during
the early stages of the dynamics t . 103. Beyond t & 103,
the mean position of the DVD starts to move throughout the
chain. This is shown by the erratic motion of the mean position
(solid black curve in the figure), which implies that there is a
chaotic spot randomly moving throughout the lattice. In order

to clearly show this behavior, we take some snapshots of the
DVD especially towards the end of the simulation (t & 105).
These snapshots show peaks at different positions implying
that indeed the chaotic spots are moving throughout the chain
as shown in Fig. 9(b).
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↩
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1

ξ
n







t

↩ ↩ ↩ ↩ 

↩ ↩ ↩ ↩ 

T


T


T


T


T


T


(a)

(b)

(c)

(d)

Fig. 9. (a) Spatiotemporal evolution of the DVD [Eq. (13)] and (b) instan-
taneous snapshots of the normalized DVDs at t = T1 ≈ 2.47× 103 (black
curve), t = T2 ≈ 2.08× 105 (red curve), and t = T3 ≈ 2.477× 105 (blue
curve) respectively corresponding to black, red and blue horizontal dashed
lines in panel (a). The results are for the momentum initial excitation dis-
cussed in Section 3 for H3 = 0.2. Panels (c)–(d) are similar to Panels (a)–(b)
but for H4 = 0.2. The snapshots were taken at t = T1 ≈ 103, t = T2 ≈ 105,
and t = T3 ≈ 5×105. The black curves in panels (a) and (c) depict the mean
position of the DVD. The color bar is in logarithmic scale such that yellower
(lighter) regions have more energy than greener (darker) regions.

In the case of the combination of cubic and quartic po-
tentials (H34) the results are qualitatively similar to those pre-
sented in Figs. 9(a)–9(b) hence we do not show them here. The
case which has only a quartic potential (H4) is also found to be
chaotic, as shown by its λ (t) (red curve in Fig. 8). Upon closer
analysis of the DVDs, the chaotic behavior exhibited by H4 is
revealed to be different from the behavior already described
for the other two types of nonlinearities which feature cubic
potentials (H3 and H34). In particular, the DVD indicates that
chaos remains localized around the excitation region for H4

as is shown by the DVD and the corresponding snapshots in
Figs. 9(c) and 9(d). Note that 𝑤(0) is centered slightly to the
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right of the excitation site in Fig. 9.

5. Statistical analysis

We further study how the system behaves statistically by

considering different mass disorder realizations for several en-

ergy levels from H = 0.05 up to H = 0.3. In particular, we

present results obtained over 30 realizations at each energy

level. The strength of the disorder is such that there is a signif-

icant number of strongly localized modes and many of those

are in the center (they are located all along the chain) simi-

lar to the one already presented in Section 2. The results for

H3 indicate that the mean participation number 〈P〉 saturates

to 〈P〉 ≈ 125 (or ≈ N/2) as the energy is increased for H3

[Fig. 10(a)]. We also find a threshold energy (H & 0.2) above

which, on average, any realization for which a highly local-

ized mode if taken as initial condition leads to this maximum

value of P ≈ 125. For the quartic potential (H4), we find no

energy delocalization and 〈P〉 remains very low as the energy

is increased as shown by the red curve in Fig. 10(a) where

〈P〉 ≈ 2. We studied the system for even higher energy exci-

tations up to H = 0.9 and we still found the system’s density

distribution to remain localized.

The statistical results of the mean spectral entropy, 〈η〉
show contrasting behaviors for H3 and H4. H3 is found to

reach energy equipartition as the predicted analytical value

is reached (〈η〉 ≈ 〈η〉an) for what appears to be an energy

threshold of around H & 0.2, as shown by the blue curve

in Fig. 10(b). On the other hand, H4 does not reach energy

equipartition even at higher energy excitations than those pre-

sented in Fig. 10. The results for H4 are shown by the red

curve in Fig. 10(b) for which 〈η〉 ≈ 1 for all initial energies in-

dicating no energy equipartition. In fact the smaller error bars

on the blue curves for energies H & 0.2 in both Figs. 10(a)

and 10(b) validates these conclusions. This result is in some

sense the inverse of what was observed for the homogeneous

α-FPUT model, which attains equipartition later than the β -

FPUT model.[32] In the latter model, one discovered route to

equipartition is through modulational instability which has an

energy threshold.[32,57]

As for the system’s chaoticity, the final value of the mean

ftmLE 〈λ 〉 does not practically depend on the system’s total

energy; for as depicted in Fig. 10(c) where 〈λ 〉 obtains values

around 1.5×10−3 for both H3 and H4, at least for the energy

range considered in this study, although a slight increase of

〈λ 〉 is seen as energy grows. H4 is found to be in general

less chaotic than H3 as shown by the lower values of 〈λ 〉 [red

curves in Fig. 10(c)] for H4. Note that the statistical results

for H34 are qualitatively similar to those for H3 presented in
Fig. 10.
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H
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η
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2

4
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λ
>
 ↼
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H


H


H


H


H


H
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(b)

(c)

Fig. 10. Mean (a) participation number 〈P〉, (b) entropy 〈η〉, and (c) ftmLE,
〈λ 〉 for H3 (blue curves) and H4 (red curves) against system’s energy H, over
30 disorder realizations for which highly localized modes are taken as ini-
tial excitations. The error bars represent one standard deviation. The dashed
line in panel (a) guides the eye to the level P̄ = 125, whilst a similar line
in panel (b) guides the eye to the analytical mean entropy at equipartition
[Eq. (10)].

6. Conclusions

In this study, we numerically investigated the dynamics
of a disordered 1D nonlinear lattice model which is relevant to
the study of bending waves, focusing on the energy delocaliza-
tion and equipartition, as well as the system’s chaotic behavior.
For this study, we chose a localized wave-packet which is al-
most similar to a highly localized mode as the initial energy
excitation. We considered three kinds of nonlinear configu-
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rations of the Hamiltonian: (i) with only a cubic nonlinearity

named as H3, (ii) with only a quartic nonlinearity called H4,

and finally (iii) a combination of the cubic and quartic terms

namely H34.

The dynamics shows that the energy delocalization

strongly depends on the system’s type of nonlinearity. A

threshold exists beyond which any initial excitation will lead

to energy delocalization for the cases of H3 and H34 in which

the cubic potential dominates the dynamics. The dynamics for

H4 remains localized throughout the whole simulation even for

the large values of the energy. Similarly, energy equipartition

is observed only when the cubic terms are present, even from

a statistical viewpoint when the system is studied at different

energy levels.

Additionally, for the same initial conditions, we studied

the system’s chaotic response using the finite time mLE and

the related DVDs. Here all three types of nonlinearities in-

duce chaotic responses. Statistically, the chaotic behavior ap-

pears to be slightly stronger when cubic terms are included

in the model (systems H3 and H34), with the strength of the

chaoticity moderately increasing as the system energy grows.

The chaotic behavior of the systems as analyzed using the

DVDs shows both localized and delocalized chaos. Localized

chaos is exclusive to H4 even for energy excitations as high as

H = 0.9.

We find that our numerical results have not only revealed

interesting nonlinear dynamical behaviors but also open the

road for further theoretical studies of chains with non-central

forces. This is due to the fact that the proposed model sug-

gests fundamentally different dynamics than the ones of well-

studied discrete systems like the DKG and FPUT models, for

which we have a better understanding. In particular, our results

regarding the very different behavior between the cubic and

quartic nonlinearities, poses the question of what are the mech-

anisms responsible for these observations especially in view

of the comparison with the α and β -FPUT models. Along the

same lines, an interesting question is how the energy spread-

ing is obtained in infinite chains and whether the increase of

nonlinearity leads (or not) to subdiffusive behaviors.

Our work furthermore contributes to the debate about the

potential localization or spreading of initially localized excita-

tions in disordered nonlinear systems when such processes are

juxtaposed to the system’s chaotic strengths.
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